在直径0.00001米的神经元上,追踪一个念头的诞生

2023-06-13 造就

造就第449位讲者 何苗

  • 复旦大学脑科学研究院研究员

现代神经科学的奠基者、西班**学家拉蒙-卡哈尔曾经说过,“只要大脑的奥秘尚未大白于天下,宇宙将仍是一个谜。”

的确,在人类探索自身奥秘的旅程中,大脑的秘密是其中最难以攀登,却又最令人向往的一座高峰。大脑是控制机体所有功能的中枢,西方医学之父希波克拉底也曾经说过:

“因为有了脑,我们才有了乐趣、欣喜与欢笑,才有了绝望、哀愁与无尽的忧思。因为有了脑,我们才看得见,才听得到。因为有了脑,我们才以一种独特的方式拥有了智慧,获得了知识。”

今天在场的各位决定放弃一天的休闲来参加未来大会,也是经过了脑的思辨与决策。而经过了前面许多场精彩的演说之后,还能够保持旺盛的好奇心和注意力,也少不了脑的控制。

大脑神经元是如何工作的?

对于脑的认知是诊断和治疗神经精神疾病的重要基础,对于发展人工智能也有着重要的借鉴意义。现代神经科学对于脑的研究,从空间尺度上来看,可以分为三个层次:

首先是在宏观层次上对脑的研究,就像是下方这幅图上展示的,用磁共振成像来对不同脑结构之间的神经活性进行观测。

其次,利用电子显微镜等技术,也可以对纳米尺度上脑的微观结构进行研究,就像下方这幅图上所展示的。

介于这两者之间,就是在介观尺度上对神经元的研究。

无论从哪个尺度上看,大脑的结构和功能都非常复杂,而介观尺度上对神经元的研究是联系微观与宏观的桥梁。

从这个层次上来看,可以看到我们的大脑中有着数以亿计的细胞,其中神经元约有860亿,这个数字比现在地球上人口总和的十倍还要多。

如果我们把每一个神经元看作是一个人,那我们的大脑就像是一个非常复杂而庞大的社会,它的正常运转离不开每一个人的分工协作。

与其他细胞一样,神经元也具备细胞体、细胞核和各种细胞器。它的特别之一在于其形态,从神经元的细胞体延展出长长的突起,一端是接收信息的树突,另一端是传递信息的轴突。能够接受**和传递兴奋正是神经元的另一个重要特征。

(图上标注依次为:树突、胞体、轴突、突触)

神经元之间相互联系和传递信息,是经由一个叫做突触的结构。从树突接收的信息到达胞体,经过整合后,沿着轴突以电冲动的形式向下传播。当它到达突触前膜的时候,就会激发神经递质这种化学小分子的释放。位于下一级神经元突触后膜上的受体与神经递质结合,打开离子通道,带电离子的进出就会改变下一级神经元的电位,这样信号就可以继续向下传递了。这样的突触叫做化学突触

另外还有一种叫做电突触,它可以允许带电离子直接在两个神经元之间流动。相互连接的神经元不仅传递信息,也处理信息。它们所构成的神经环路是承载各项脑功能的结构基础。

下面就是一个非常简化的神经环路示意图,我们可以看到红色的感觉神经元从外界接收信息并传递到我们的脑中,经过橙色的中间神经元处理,再由蓝色的运动神经元传递到外周的肌肉上。


神经元相互链接组成神经环路行使各项脑功能

譬如说,如果你现在突然听到一声巨响,被吓了一跳,这样的行为反应基本就是由上述类似的神经环路所介导的。

如何认识极其复杂的神经元?从海兔和小鼠身上找答案

在大脑中的任何一个脑区,都存在着许许多多的神经元。如果我们把每个神经元都绘制出来,所看到的就像是一团乱麻,无法知道它们到底在神经环路中扮演着什么样的角色。

那么应该怎样去研究这个复杂的问题呢?通常有两个思路:

第一个思路就是从更为初级、更为简单的**入手。

比如说,不要直接研究人的大脑,而是去选择一个更简单的低等模式生物。

图中这位科学家埃里克·坎德尔,他所选择的模式生物是海兔。海兔是一种外表很萌的海洋腹足类生物,因为头上长着触角,像兔子的耳朵,所以得名。他之所以选择这种模式生物来研究,是因为它的神经元数量相对比较少,而且细胞的个头非常大。

从中间这个橙色的图上可以看到,最大的海兔神经元直径达1.1毫米,而我们大脑中大部分神经元的直径是在十微米左右的数量级。另外,海兔的神经元本身就具备不同的颜色,所以根据它所处的位置、大小、颜色,就可以很容易地分辨不同的神经元,并且对它们进行记录和研究。

坎德尔所研究的是学习记忆,我们可能觉得这好像是人才有的一种高级功能,但实际上它是生物适应环境时非常重要的一个基础功能。

坎德尔利用的是一个叫做缩鳃反射的行为范式,海兔的身体如果被触碰,它为了保护自己就会把柔软的鳃缩起来,就是图中**的部分。

大家可以看到从左边到右边,鳃的体积是变小了的。如果你反复地触碰海兔,但是不伤害它,海兔就会学会下一次不需要反应得这么强烈。

反过来,如果把非伤害性的触碰和伤害性的**耦合起来,比如说在它的尾部给予电击,那么海兔就会学会下一次再有非伤害性触碰的时候,它会预测着一次伤害的到来,那就需要反应得更为强烈一些。这样一个过程就叫做敏化,也就是一个学习的过程。

如果经过反复多次多天的训练,这个记忆可以延续数周之久。对于海兔来说,这算是非常长的了,因为它的生命周期只有一年左右。

这样的响应由一个相对简单的神经环路所介导,就像上图所示,有感受**的感觉神经元,有控制肌肉收缩的运动神经元,还有调控这两者互相联系的中间神经元。

如果我们对运动神经元和感觉神经元进行记录,就会看到面对同样的**,敏化之后的运动神经元响应会变得更大。利用这套简单的模型和行为范式,神经科学家们做出了非常多的重要发现,坎德尔也因为他的杰出贡献获得了2000年的****。

在低等生物中发现的这些原理,很多也可以适用于高等生物,最终我们还是想要回到哺乳动物的大脑中来。

另一个研究的思路就是进行分类归纳,总结规律。

如果把我们的大脑比作电子环路,那些大规模集成电路也包含成千上万个电子元件,但是作为运算基础的电子元件的类型是有限的。单独的元件可能大小不同,形状不一,但是隶属于同一类的元件遵循着相同的底层运算逻辑。与此相仿,我们也可以对神经元进行分门别类的研究,寻找同一类神经元各自遵循的普遍规律。

100多年前,卡米洛·高尔基发明了一种染色方法,可以随机把一小部分神经元染成深色,最中间这幅图所展示的小脑蒲肯野细胞,就是用高尔基染色法所染出来的。

卡哈尔对高尔基染色做出改进,并且借此对人脑中形形**的神经元进行了观察和绘制。右边这三幅图就是他所绘制的神经元,以及与记忆相关的海马体、与高级认知功能相关的大脑皮层的构造。

但现在问题又来了,我们想简化对神经元的研究,从研究每一个神经元到研究每一个神经元类型。细胞的每个特征实际上都具备一定的物质基础,也就是以蛋白质为首的基因的产物。

从这个层面上来看,可以说神经元的多样性实际上是由基因表达的多样性所决定的。

编码在我们基因组中的遗传程序调控着神经元的产生、分化和各种特征,这其中包括在神经干细胞和神经元中起决定命运的转录因子,也包括在分化的神经元中差异表达的标记基因。

前者就像是在我们成长的历程中,来自学校或者家庭的引导,帮助我们选择将来的职业,做出人生规划;后者就像是步入社会、走上工作岗位之后,我们的职业所赋予的特征,比如医生的白大褂,或者**的**,一眼就可以识别身份。那么利用这样一些基因,我们就可以对神经元进行分类和遗传标记。

要具体实现这种遗传标记,仍然要借助模式生物——小鼠,进而就要建立转基因小鼠得模型。

所谓转基因,实际上就是把本来不存在于内源基因组的一个外源基因**到小鼠基因组里。

这是一个简单的流程图。

比如说,如果我们**一个编码荧光蛋白的基因,就可以让小鼠带上荧光,就像是右边这个红色和绿色荧光小鼠这样。

要做到这一点,我们就需要定向地把基因**小鼠基因组的特定位置,就是前面提到的那些决定神经元命运的转录因子,或者是差异表达的标记基因。

标记神经元形态

利用这样的遗传标记法,我们可以对神经元的形态进行非常直观的观察。它的特异性会更好,效率更高,可靠性、可控性、分辨率等各方面都有大幅提升。

统计神经元分布

我们还可以对不同类型的神经元在不同脑区的分布进行统计。这是三种神经元在小鼠不同剖面分布的示意图,这样我们就可以非常直观地看到,在不同脑区中,不同神经元的密度是不一样的。

这种密度的差异和它的环路构筑模式非常相关,我们也可以用这种方式来追踪神经环路的连接。

如何用基因的方法更好地研究神经元?

除了这些形态学和解剖学方面的研究,我们还希望监测和干预它的活性;甚至直接把一部分神经元**,来看看对脑功能和神经环路有怎样的影响;或者是模拟出神经精神疾病,看看不同神经元对疾病的发生和发展起怎样的作用。

要达到不同的目的,就要应用不同的工具基因。

为了兼顾特异性和灵活性,我们可以**一个通用的分子开关,然后利用它去激活不同的工具基因,以达到相应的目的。

将遗传标记与其他的现代神经科学研究手段相结合,我们不仅能够对神经元进行分类,还能够追踪它们的发育历史,绘制它们的环路连接图谱,监测甚至干预它们的功能以及模拟神经精神疾病,进而解析脑的发育机制和工作原理。

在未来,我相信随着这项技术的进一步发展,以及其他神经科学的前沿技术的发展,我们会获得更多关于脑科学的新知,帮助我们推开大脑的奥秘之门。

造就FUTURE是一场科技、文化、娱乐交融的思想盛宴,是一场艺术与科技交织的美妙盛宴。它是造就最为前沿的思想交流阵地,是一年一度的未来科技探讨盛会。

策划 | 李莹;编辑 | 曹威;校对 | Lily

** | Pencil;版面 | 漫倩


造就:剧院式演讲,发现创造力

更多精彩内容,敬请点击文末蓝字“了解更多”。



相关股票:

崛起的中科系,被改变的我国芯片产业格局

当前,以芯片为代表的信创产业逐步成为国家科技竞争力的重要标志。在国产CPU产业强势崛起的过程中,你首先想到的会是哪几企业?答案有很多,但“中科系”的提及率绝对很高。作为国家战略科技力量,“中科系”旗下

芯片战场丨芯片领域三箭齐发 英特尔跑步突围

21世纪经济报道记者倪雨晴 圣何塞报道在硅谷源泉之一的圣何塞,英特尔CEO帕特·基辛格(Pat Gelsinger)正在带领英特尔加速奔跑。当地时间9月19日,2023英特尔on技术创新大会于美国加利

OPPO重启芯片业务?国产芯片或需告别“单打独斗”

财联社9月19日讯(记者 唐植潇)近日有消息称,OPPO将会重启芯片业务,并且“有部分员工已经回流,加入到了车载业务之中”。记者就此事向OPPO方面进行核实,对方表示“不予置评”。特百惠(我国)数字与

600亿颗芯片!我国巨头正式宣布,美媒:**也没料到制裁这么快

我国芯片市场与美国依赖我国的集成电路市场一直以来都是一个巨大的市场,拥有庞大的需求和巨大的增长潜力。我国的电子消费市场一直在迅速增长,包括智能手机、电视、电脑和各种智能设备等,这些设备都需要高性能的芯

最新手机芯片天梯图:A17、华为麒麟9000S,排在什么位置?

近日,最火的两颗芯片分别是苹果的3nm芯片A17 Pro,虽然很多人吐槽它较上一代提升不明显,但论性能,可以碾压任何安卓芯片,甚至是领先2代的。另外一款芯片,则是华为麒麟9000S,当然,这颗芯片工艺

韩国芯片连续13个月暴跌,尹锡悦指责我国不采购,外媒:自食其果

据韩国媒体称,韩国的半导体出口额已经连续暴跌13个月了,比去年同比下降了28%左右。韩国政府急的焦头烂额。尹锡悦政府竟直接甩锅我国,话里话外都是指责,他认为韩国半导体卖不出竟是我国的原因,我国应该帮助

我国突破芯片瓶颈将影响全球秩序?美国很担心,指出我国关键弱点

我国在芯片半导体领域一直深受美国的**,通过贸易制裁的方式阻止高端芯片进入我国市场。这样的举措一度造成我国芯片领域发展断档,不过随着我国科技企业近几年的突破,目前我国已经在芯片制造方面取得了重大的成果

没有他,我国芯片发展至少要**十年?

前几天,华为一声不响的上线了mate60系列,带着麒麟芯片9000s强势回归,吸引了全世界的目光。而华为麒麟芯片**背后,我们不该忘记这位老人—张汝京。我国半导体之父,为回**造芯片,被开除**户籍,

陈清泰:未来汽车颠覆传统,50%以上的零部件体系面临重构

【有车以后 资讯】“未来汽车对传统汽车的颠覆性,使传统零部件体系的50%以上都面临重构。”12月16日,在全球智能汽车产业峰会(GIV2022)上,我国电动汽车百人会理事长陈清泰指出,智能汽车的价值链

「姿势」一辆汽车由多少个零件组成?保证你说不清...

投稿点这里汽车有多少个零件?其实这个问题并没有一个十分确切的标准答案...据估计,一般轿车约由1万多个不可拆解的**零部件组装而成。结构极其复杂的特制汽车,如F1赛车等,其**零部件的数量可达到2万个

全球最大的10家汽车零部件供应商 都是世界500强 无我国企业

【卡车之家 原创】美国《财富》**每年发布的世界500强排行榜,是以营业收入数据对全球企业作出排名的榜单。2017年“世界500强”榜单中,汽车制造商和零部件厂商共占据33席(除去大型工程车辆企业),

汽车零部件企业哪家强?除了博世**还有这些名字你一定耳熟能详

文:懂车帝原创 李德喆[懂车帝原创 行业]9月18日,由《我国汽车报》主办,罗兰贝格协办的2019汽车零部件“双百强”企业发布会在江苏南京举行。在两份榜单中,博世、**、电装位列2019全球汽车零部件

汽车零部件行业现状及产业链

行业现状(Reference:产业运行 | 2021年汽车工业经济运行情况)中汽协预测:2022年我国汽车销量达到2700万辆,新能源销量超过550万辆(Reference:乘用车市场信息联席会)以乘

全球十大汽车零部件供应商,核心技术都被他们垄断,自主遗憾缺席

提到电影,我们会想到张艺谋、冯小刚,而很少会想到幕后的制作人;提起流行乐,我们会想到周杰伦、萧敬腾,而很少会想到背后的作词人。台前台后,一幕之别,知名度往往相差甚远。车界又何尝不是如此,知名车企我们都

高清汽车各零部件构造图,看完你就是汽车专家!

2023世界移动通信大会即将举行,大批中企强势回归!

来源:环球时报 【环球时报记者 倪浩 陶震 环球时报驻德国特约记者 青木】经过3年疫情后,全球最具影响力的通信展今年有望再现往日盛况。2月27日至3月2日,由全球移动通信**协会(GSMA)主办的20

太空新赛道:6G时代的卫星通信,究竟是什么?

近日华为、苹果争相推出手机卫星通信功能,成为一大亮点,不少手机厂商也将目光投到卫星通信。放眼未来,手机直连卫星的卫星通信服务将是大势所趋,也是6G时代的重要标志。华为以“北斗三号”为依托,率先把“卫星

光纤#光纤通信

国内企业在光通信产品的参数测试过程中,通常使用国外的先进测试设备。然而,这些测试仪器之间往往是孤立存在的,需要手动调试仪器并通过旋钮、按钮和人眼观察波形或数据。这不仅*作繁琐易出错,而且测试效率低下。

龙头20cm涨停,7天股价翻倍!一文看懂卫星通信前世今生及产业链

卫星通信概念股华力创通今日再度强势拉升,截至发稿,该股股价20cm涨停,7个交易日累计涨幅近113%,现报23.52元续刷阶段新高,总市值155.9亿元。消息上,有媒体从供应链获悉,Mate 60 P

工信部:目前我国尚不具备实现网络层面的移动通信号码归属地变更的条件

针对网友提出的“电话号码归属地更改”建议,工信部近日给出了官方回复。此前,有网友在人民网留言板向工信部留言称,“现在电话都是实名制,电话号绑定的***及一些主流的软件较多,更换号码后造成一系列问题

AD
更多相关文章